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Abstract: Changes in enzymatic activities in response to carbon starvation were in-
vestigated inArabidopsis thalianain two distinct experiments. One compares the
Columbia ecotype (Col-0) and its starch deficientpgm mutant (plastidial phospho-
glucomutase), the other investigates the enzymatic activities of Col-0 under extended
night conditions.
A classical technique for detecting and visualizing relevant information from the mea-
sured data isprincipal component analysis (PCA). We show thatindependent compo-
nent analysis (ICA)is more suitable for our questions and the results are more precise
than those obtained with PCA. This higher informative power is only achieved when
ICA is combined with suitable pre-processing and evaluation criteria. It is essential
to first reduce the dimensionality of the data set, using PCA. The number of principal
components determines the quality of ICA significantly, therefore we propose a crite-
rion for estimating the optimal dimension automatically. The measure of kurtosis is
used to sort the extracted components.
We found that ICA could detect on the one hand the time component of the extended
night experiment, and on the other hand a discriminating component in thepgmmutant
experiment. In both components the most important enzymes were the same, confirm-
ing the carbon starvation phenotype in the mutant.
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1 Introduction

Techniques for visualizing data sets and for extracting important variables in a ‘blind’ un-
supervised way are very helpful for biologists to interpret the given data. Biological back-
ground information such as group affiliations (class labels) are not used inunsupervised
algorithms. Such techniques are an attempt to present the major or global information
contained within the data set, independently from the aim of the experiment. An unno-
ticed supervising effect could appear when adjusting some algorithm parameters by hand.
Therefore, we define different criteria for automatic analysis.
One well-established technique for dimensionality reduction and visualization is the clas-
sicalprincipal component analysis (PCA), where the extracted information is represented
by a set of new variables, termedcomponentsor features. Various PCA-algorithms have
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Figure 1: The proposed ICA procedure. First, the data set is reduced by PCA thereby
maintaining all of the relevant variances. ICA is applied to this reduced data set and
the extracted independent components are sorted by their kurtosis value.

been described in [DK96].
In the field of molecular biology, PCA has become a popular tool for visualizing data sets
and for extracting relevant information [WCHB03, UWLK+03]. However, PCA is only
powerful if the biological question is related to the highest variance in the data set. Else-
where, other techniques may be more helpful as shown in [GYHS03] and [JBGS03] for
supervised techniques in combination with validation and pre-processing.
More general questions about the underlying data structure are better investigated by an
unsupervised technique which would detect relevant components, independently from the
background knowledge of the experiment. Such unsupervised concepts allow a better
understanding of the molecular response in biological experiments. In addition to experi-
mental characteristics, unexpected factors can also be detected.
Different techniques were developed to overcome the disadvantages of the original PCA.
Several extensions of PCA are done in a nonlinear way, for example a nonlinear PCA
[SV02] or locally linear embedding [RS00]. However, due to the limited number of sam-
ples in molecular data sets, linear alternatives might be more reliable. A very promising
linear technique isindependent component analysis (ICA). In ICA an independence condi-
tion is optimized, which often gives more meaningful components than by optimizing only
the variance, as is done by PCA. Because of this the components of ICA are termedinde-
pendent components (ICs), meaning that different ICs represent different non-overlapping
information.
For applying ICA we assume that the observed data are conditioned by unknown funda-
mental factors, which are independent from each other. By searching for components as
statistically independent as possible these required factors can be detected. These fun-
damental factors are often termedsourcesand the application field is calledblind source
separation, BSS.
The concept of independent component analysis was first proposed by Comon [Co94],
with subsequent developments by Bell and Sejnowski [BS95]. One of the first moti-
vations for ICA was sound signal separation. Currently ICA is becoming more impor-
tant for biomedical applications. Here, applications on time series, such as EEG data
[MWJ+02] have to be distinguished from applications on rather static data like gene ex-
pression [Li02, MMSM02]. There exists a wide variety of methods for performing ICA.
For time series ICA algorithms such as TDSEP [ZM98] have been developed, whereas
algorithms such as FastICA [HO00] or [BW04] are more suitable for static data. Detailed
descriptions about ICA are given in [HKO01] and in [CA02].
Although the dimensionality of the considered enzymatic data is not as high as that of
many metabolite or gene expression data sets, we show that ICA gives optimal results
only in conjunction with PCA as a pre-processing step.
ICA is able to extract as many ICs as the data set has dimensions (number of variables).
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Figure 2: Pgmmutant experiment: ICA is compared to PCA. Thepgmmutant and
the wild type are marked differently. On the left, PCA gives already a good result.
The first component (PC 1) discriminates the two groups. By applying ICA to the
total data set, the result is worse than the result of PCA. However, by using PCA for
pre-processing before applying ICA, a more strongly discriminating component can
be extracted, as shown on the right.

For technical reasons the ICs have to be sorted. In [Li02], the ICs were sorted by a com-
bination of a contrast function and a variance criterion. Here we capture first the relevant
variances by PCA and then the ICs can be extracted and sorted without considering the
variance. The kurtosis distribution measure is used for ranking the independent compo-
nents. The proposed procedure is illustrated in Figure 1, see also [SGS+04]
We have established a set of microplate-based assays for 17 enzyme activities from various
metabolic pathways in rosette leaves ofArabidopsis thaliana(Gibon et al., in preparation).
We applied this first platform to compare the evolutions of transcript levels and the corre-
sponding enzyme activities within a diurnal cycle in the wild type and in the starch less
mutantpgm. We then determined these activities in plants submitted to an extended night,
to investigate the response to carbon starvation and to complement results obtained at both
transcript and metabolite level [TBG+04].

2 PCA – pre-processing

With PCA a reduced data set with maximal variance is searched for. By applying PCA for
visualization it is assumed that the most interesting information will be directly related to
the highest variance in the data. The best projection or visualization is then given by the
first two principal components (PCs) of highest variance. However, this is often a false
assumption, and the relevant information is not related to the highest amount of variance,
but can nevertheless be related to a significantly high level. Thus PCA can be used to
reduce the high dimensionality of the data while maintaining the relevant variances. Such
a pre-processing step can preserve all of the relevant information and reduces only the
noise given by small variances.
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Figure 3: ICA is applied to different numbers of principal components (PCs). On the
top row IC 1 is plotted against IC 2 for different numbers of PCs. The best separation
between the two groups can be found at 4 PCs. In the second row the kurtosis values
of each IC are plotted. At 4 PCs ICA detects the highest number of ICs with a negative
kurtosis value (‘num’). Below the proposed criteria for detecting the optimal number
of PCs are plotted. All criteria have their optimum at 4 PCs.

3 ICA – independent component analysis

As the data set has been reduced in PCA by optimizing the variance, independent compo-
nent analysis (ICA) can now be applied to this reduced data set for optimizing an indepen-
dence condition.
Similarly to PCA, ICA extracts also a set of components. In contrast to PCA these compo-
nents are constructed in order to minimize the dependence and are therefore termedinde-
pendent components (ICs). Independence is a stronger condition than the non-correlation
in PCA and gives often more meaningful components. The components of ICA do not
have to fulfill an orthogonality condition.
To generate independent components, different criteria (contrast functions) can be opti-
mized: higher-order dependencies, entropy or kurtosis. In this article, ICA was performed
by the CuBICA4 algorithm [BW04], which provides good and reproducible results.



4 Significant components - kurtosis

ICA is able to extract as many components as the data set has dimensions. These com-
ponents have no order. For practical reasons we had to define a criterion for sorting these
components to our interest. One measurement which can match our interest very well, is
kurtosis.
Kurtosis is a classical measure of non-Gaussianity, and is computationally and theoreti-
cally relatively simple. It indicates whether the data are peaked or flat, relative to a Gaus-
sian (normal) distribution. A Gaussian distribution has a kurtosis of zero. Positive kurtosis
indicates a ‘peaked’ distribution (super-Gaussian) and negative kurtosis indicates a ‘flat’
distribution (sub-Gaussian).

kurtosis(z) =
∑n

i=1(zi − µ)4

(n− 1)σ4
− 3

wherez = (z1, z2, ..., zn) represents a variable or component with meanµ and standard
deviationσ, n is the number of samples. The kurtosis is the fourth auto-cumulant after
mean (first), variance (second), and skewness (third).

From purely Gaussian distributed data, no unique independent components can be ex-
tracted, therefore, ICA should only be applied to data sets where we can find components
that have a non-Gaussian distribution.
Examples of super-Gaussian distributions (highly positive kurtosis) are speech signals, be-
cause these are predominantly close to zero. However, for molecular data sub-Gaussian
distributions (negative kurtosis) are more interesting. Negative kurtosis can indicate a
cluster structure or at least a uniformly distributed factor. The former can resolve between
two experimental conditions (high and low enzymatic responses), whereas the latter can
represent a continuously changed experimental factor such as the temperature or the light
intensity. Thus the components with the most negative kurtosis can give us the most rele-
vant information.

5 Optimal PCA-dimension

By using the PCA as a pre-processing step, the number of PCs, hence the optimal reduced
dimensionality is usually unknown. Thus we had to find a way to estimate this dimension.
Here, the estimation was aligned with the aim of our analysis, i.e. to find as many relevant
components as possible. As a negative kurtosis indicates relevant components, the dimen-
sion, where we can extract the highest number of independent components with negative
kurtosis is the optimal dimension.
As an alternative to counting simply the number of components with negative kurtosis, the
square sum over these negative values can be used. This might be a more reliable criterion,
as a kurtosis close to zero has little effect.
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Figure 4: Continuous night (CN) experiment. PCA is compared to ICA. The time
steps of the experiment are marked differently. Already in PCA a separation of the
late time steps (72h and 148h) can be found, but the direction of this time factor is not
directly related to PC 1 or PC 2, it is on the diagonal. ICA is able to arrange this time
factor to a single component, IC 2.

6 Influence values

As the detected independent components often have a biological interpretation, it would
be important to know, which variables (enzymes) have the highest influence on these com-
ponents. The influences are given by the transformation matrices of PCA and ICA and are
also termedloadingsor weights.
PCA transforms ad-dimensional sample vectorx = (x1, x2, . . . , xd)T into a usually lower
dimensional vectory = (y1, y2, . . . , yk)T , whered is the number of masses andk is
the number of selected components. The PCA transformation is given by the eigenvec-
tor matrix V , y = V x. Similarly, ICA transforms this vectory to the required vector
z = (z1, z2, . . . , zk)T , containing the independent valueszi for each ICi. For that a de-
mixing matrixW is estimated by ICA,z = Wy. V gives the influences of each variable
(mass) on each of the PCs, whereasW gives us the influence of each PC on each of the
ICs. We can combine both matricesU = W ∗V to a direct transformationz = Ux, where
U gives vector-wise the required influences of each variable on each of the ICs.

7 Experiment

One experiment compares enzyme activities from the wild type Columbia (Col-0) and
the pgmmutant, which cannot synthesize starch. The other experiment investigates the
response to carbon starvation, obtained by extending the night for up to 148h. The re-
sponses of 17 different enzymes were investigated. The number of samples is 125 in the
mutant experiment and 55 in the continuous night experiment. The variables (enzymes)
are normalized to unit variance.



Continuous night experiment Mutant experiment
IC 2: time factor IC 1: Mutant ↔WT

Enzyme infl. Enzyme infl.
AcidInvertase ← -0.26 AcidInvertase ← -0.24
GLDHam ← -0.22 GLDHam ← -0.23
ShikD 0.19 Fd-GOGAT 0.16
Fumarase 0.15 NR Vmax 0.16
Glycerokinase -0.11 NAD-GAPDH 0.12
PEPCase 0.11 NADP-GAPDH 0.12
NR Vmax 0.10 Glycerokinase 0.11
NADP-GAPDH -0.09 ShikDH 0.10
AspAT 0.08 G6PDH -0.10
Glycerokinase 0.07 Fructokinase 0.10

Table 1: Enzyme influence. The 10 enzymes of highest influence are given for IC
2 of the continuous night experiment and for IC 1 of thepgm mutant experiment.
The first two most important enzymes are identical, and hence the continuous night
time component is quite similar to the discriminating component of thepgmmutant
experiment.

In the pgm mutant experiment, PCA already gives a good result. That means that the
relevant experimental conditions are represented by a high amount of variance in the en-
zymatic data, but this is not necessarily the optimal projection of the data. The result can
be improved by applying ICA in the proposed procedure. The first component of ICA
(IC 1) has a higher discriminating power than the first component of PCA (PC 1), see
Figure 2. The most relevant independent components are detected in an automatic man-
ner. All proposed criteria point to the optimal number of PCs in PCA pre-processing, see
Figure 3. Note that such a high discriminating component could not detected by applying
ICA to all variables without PCA pre-processing.
In the continuous night experiment, the projection of the first two principal components
shows that the early time steps are close to each other and only the last two time steps
(+72h and +148h) are distinct from the others. However, the direction of time informa-
tion is not directly assigned to one of the principal components, it is on the diagonal. In
contrast to this, ICA is able to arrange this time component automatically to one of the
independent components, IC 2, see Figure 4
For both interpreted components, the discriminating component IC 1 of thepgmmutant
experiment and for the time component IC 2 of the continuous night experiment, the first
two most important enzymes are identical as can be seen in Table 1.
It would be interesting to know at what time point apgmmutant has an identical response
to a wild type experiencing an extended night. For this diagnostic task, thepgmenzyme
data are projected into the independent component space of the continuous night experi-
ment by using the transformation matrix of continuous night. Thepgmmutant shows the
same enzymatic response as a wild type under 48h to 72h extended night condition, see
Figure 5.
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Figure 5: The mutant (pgm) experiment is joined with the continuous night (CN) ex-
periment. On the left, the ICA result of the continuous night experiment from Figure 4
is shown. On the right thepgmsamples are transformed into the component space of
the continuous night experiment. The plot shows that the time component IC 2 of the
continuous night experiment have also some discriminating effect in thepgmexperi-
ment. In the middle both data sets are superimposed. Thepgmsamples fall into the
region within 48h and 72h of the continuous night experiment.

8 Conclusion

We have demonstrated that independent components of ICA can have greater discriminat-
ing power and can be more intepretable than the principal components of PCA. This higher
informative power is only achieved when ICA is combined with suitable pre-processing
and evaluation criteria.
The kurtosis measure is used for estimating the optimal number of principal components
(PCs) in the PCA pre-processing step and is also used for sorting the detected independent
components (ICs). Applied to thepgmmutant experiment, the first independent compo-
nent (IC 1) discriminates between thepgmmutant and the wild type. In the continuous
night experiment, the first component could not be interpreted and might be an artefact,
but the second component (IC 2) could be interpreted as the time component of the ex-
periment. We found that the two most strongly implicated enzymes are identical in both
interpreted components. Thus, as expected, the starch deficientpgmmutant shows similar
behaviour to a wild type plant grown in darkness. This could also be shown by combining
both data sets.
Although in this study ICA is applied to enzymatic data, the proposed approach is not re-
stricted to these kind of data and could be applied to high dimensional data from metabolomic,
proteomic and transcriptomic investigations. The described approach is available for pub-
lic use inMetaGeneAlyse[DKS03], a web-based analysis tool for molecular biology.
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